A dental crown is a cap-like restoration used to cover a damaged tooth. Crowns can give support to misshapen or badly broken teeth and permanently replace missing teeth to complete a smile or improve a bite pattern. They may be molded from metal, ceramic, plastics, or combinations of all three. They are cemented in place and coated to make them more natural looking. Historically, a variety of materials have been used as tooth replacements. The ancient Egyptians used animal teeth and pieces of bone as primitive replacement materials. More recently, artificial teeth have been fabricated from substances such as ivory, porcelain, and even platinum. With modern technology, high quality tooth replacements can be made from synthetic plastic resins, ceramic composites, and lightweight metal alloys.
There are several key factors to consider in the design of dental crowns. First, appropriate raw materials with which to make the crown must be identified. These materials must be suitable for use in the oral cavity, which means they must be acceptable for long term contact with oral tissues and fluids. Crown components must have a good safety profile and must be non-allergenic and non-carcinogenic. The American Dental Association/ANSI specification #41 (Biological Evaluation of Dental Materials) lists materials which have been deemed safe for use. In addition to safety considerations, these materials must be able to withstand the conditions of high moisture and mechanical pressure, which are found in the mouth. They must be resistant to shrinkage and cracking, particularly in the presence of water. Metal is preferred for strength but acrylic resins and porcelain have a more natural appearance. Therefore the selection of crown material is, in part, dependent on the location of the tooth being covered. Acrylic and porcelain are preferred for front teeth, which have higher visibility. Gold and metal amalgams are most often used for back teeth where strength and durability are required for chewing but appearance is less critical.
The second factor to consider when designing a crown is the shape of the patient's mouth. Dental restorations must be designed to mimic the bite properties of the original tooth surface so the wearer does not feel discomfort. Since every individual's mouth is different each crown must be custom designed to fit perfectly. Successful crown design involves preparation of an accurate mold of the oral cavity.
There are four main types of materials used in crown construction: The plasters used to create the mold, the materials from which the crown itself is made (e.g., metal, ceramic, plastic), the adhesives used to cement the crown in place, and the coatings used to cover the crown and make it more aesthetically appealing.
Plaster molds are made from a mixture of water and gypsum powder. Used for dental applications since the 1700s, gypsum is finely divided calcium sulfate dihydate. Different types of plasters are used depending on application: impression plaster is used to
Metals are frequently used in crown construction because they have good hardness, strength, stiffness, durability, corrosion resistance, and bio-compatibility. Metals formulated as mixtures of mercury have been historically used. In fact, one source notes that metal amalgam was used as a dental restorative as early as 1528. Common alloys used in crowns are based on mixtures of mercury with silver, chromium, titanium, and gold. These mixtures form a blend than can be easily shaped and molded, but which hardens in a few minutes.
Ceramics are well suited for use in crowns because they have good tissue compatibility, strength, durability and inertness. They can also be made to mimic the appearance of real teeth fairly closely. However, the tensile strength of ceramic is low enough to make it susceptible to stress cracking, especially in the presence of water. For this reason, ceramic is most often used as a coating for metal-structured crowns. The two primary types of ceramics used in crowns are made from potassium feldspar and glass-ceramic.
The first resin used in denture materials was vulcanized rubber in 1839. Since then, a number of other resins have been developed which are more suitable for dental applications. Today, acrylic polymer resins are commonly used in dentures and crowns. Specifically, polymethyl methacrylate is most often used. This type of resin is made by mixing together chemical entities known as monomers with activating chemicals which cause the monomers to react and link together to form long chains called polymers. Some of these resins harden at room temperature as this reaction progresses. Others require heat or ultraviolet light to catalyze the change.
Special dental adhesives, or dental cements, are used to hold the crown in place. These can be classified as either aqueous or nonaqueous. The aqueous type include zinc phosphates, polycarboxylate cements, glassionomer cements, and calcium phosphate cements. The nonaqueous type include zinc oxide-eugenol, calcium chelates, and acrylic resins such as polymethyl methyacrylate.
Coatings are used to make the crown appear more natural. Porcelain is used in this regard, but it is difficult to work with and hard to match to the tooth's natural color. Resins similar to the ones used in tooth construction are also used to create tooth-colored veneers on crowns. These resins have an advantage over other veneers in that they are inexpensive, easy to fabricate, and can be matched to the color of tooth structure. However, acrylic coatings may not adhere to the crown's surface as well as porcelain or other materials. Therefore, the prosethedontist may design the crown's surface with mechanical undercuts to give the coating a better grip. Resin coatings also have relatively low mechanical strength and color stability and poor abrasion and stain resistance as compared to porcelain veneers.
Good quality control is critical to ensure the crown fits and looks natural in the patient's mouth. Every crown is unique because every person's mouth is different and every crown is custom molded to fit. To ensure appropriate fit and feel, fine details can be added to the crown by hand after the molding process is completed. Even with minor adjustments, quality problems and failures in crowns are likely to occur. Key quality control issues include failures due to biological factors (such as caries, recurrent decay, sensitivity problems, and periodontal diseases), mechanical reasons (including fracture of the crown surface, and poor cementation), aesthetic problems (discoloration of the surface), and damage due to traumatic accidents. In such situations it may become necessary to reposition or remove a crown to allow for either replacement or other dental operations. There are special crown and bridge removal systems that have been developed for easy removal of these prosthedontics. This is accomplished by placing a precision vertical channel in the surface of the crown, then threading the surface until the cement layer has been broken. The crown can then easily be lifted from the underlying tooth without force.
Denture manufacture generates little waste other than minimal amount resulting from the gypsum and plaster materials used in mold making and the excess acrylic resins used in crafting the teeth and mounts. These materials are not generally in large quantities since crowns are crafted by hand and are not mass produced on a production line.
Dental technology is constantly advancing and these improvements are already finding application in dental crown manufacturing. State of the art crowns can be made with an industrially produced core made of densesintered ceramic, and an outer layer of porcelain is added by hand. This futuristic crown material is made by an advanced Computer Aided Design (CAD) process, known as Procera process, which was introduced in the mid-1990s in Switzerland. This process results in crowns with improved strength and optimal fit. Unlike other crown materials, crowns made by the Procera process can be used anywhere in the mouth due to the strength of its core material and its more natural appearance. Another advance in crown technology involves pre-made and pre-sized stainless steel crowns, which are designed as generic tooth replacements. Usage of this new type of crown is very simple: first the tooth surface is prepared then the selected crown is cemented in place with a standard stainless steel crown adhesive. The crown can be crimped or cut to fit and the epoxy finish will not chip or peel. While this new technology offers increased simplicity, it does not give the same appearance as a custom made crown. Other future advancements are likely to come from new resins, which have improved adhesion in the high moisture environment of the oral cavity.
Geering, Alfred H., Martin Kundert, and Charles Kelsey, ed. Complete Denture & Overdenture Prosthetics. Thieme Medical Publishers, Inc., 1993.
Goldstein, Ronald. Change Your Smile. Chicago: Quintessence Publishing Co., 1997.
Woodforde, J. The Strange Story of False Teeth. New York: Universe Books, New York, 1968.
Ellison, Robin E. "Developing the Wax Pattern for Removable Partial Dentures." VHS tape distributed by the National Audiovisual Center, 1980.
— Randy Schueller
Comment about this article, ask questions, or add new information about this topic: