Vitamin



Background

Vitamins are organic compounds that are necessary in small amounts in animal and human diets to sustain life and health. The absence of certain vitamins can cause disease, poor growth, and a variety of syndromes. Thirteen vitamins have been identified as necessary for human health, and there are several more vitamin-like substances that may also contribute to good nutrition. Originally, it was thought that vitamins were particular chemical compounds called amines, but now it is known that the vitamins are unrelated chemically. Their actions are different, and though exhaustively studied, not everything is understood about how they work and what they do. The vitamins are named by letters—vitamin A, vitamin C, D, E, K, and the group of B vitamins. The eight B vitamins were originally thought to be one vitamin, and as more was learned about them, they were given numeral subscripts: vitamin B,, B 2 , etc. The B vitamins are now commonly called more aptly by chemically descriptive names: B, is thiamine, B 2 is riboflavin, B 6 and B 12 retain their numeral names, and the other B vitamins are niacin, pantothenic acid, biotin, and folic acid. The vitamins are found in plant and animal food sources. They have also been chemically synthesized and so can be ingested in their pure form as nutritional supplements. It is not known precisely how much of each vitamin each person needs, but there are recommended daily allowances for 10 vitamins.

Some researchers have made extravagant claims about the benefits of large doses of specific vitamins as either preventatives or cures for diseases from acne to cancer. As new discoveries are made and old claims are either debunked or reinforced often, it is safest to say that more is understood about the consequences of lack of vitamins than what particular vitamins may do. For example, deficiency of vitamin A leads to break-down of the photosensitive cells in the retina of the eye, causing night blindness. Absence of vitamin C in the diet leads to scurvy, a disease formerly the bane of sailors. Absence of vitamin D may lead to rickets, a bone disease.

History

Many researchers were responsible for piecing together the existence of vitamins as necessary components of the human and animal diets. One of the first people to study nutrition from a chemical standpoint was English physician William Prout. In 1827, he defined the three essentials of the human diet as the oily, the saccharin, and the albuminous, which in modern-day terms are fats and oils, carbohydrates, and proteins. In 1906, an English biochemist, Frederick Hopkins, discovered that mice fed on a pure diet of the three essentials could not survive unless they were given supplementary small amounts of milk and vegetables. A Polish scientist, Casimir Funk, coined the term vitamines in 1912 to describe the chemicals he believed were found in the supplementary food that helped the mice survive. Funk first believed that the vitamines were chemically related amines, thus vita (life) plus amines. As other vitamins were isolated that were not amines, the spelling of the word changed. Other researchers working on diseases such as scurvy and beriberi, which are caused by vitamin deficiency, contributed to the isolation of the different vitamins. Still, little was generally understood about vitamins at the beginning of the twentieth century. For instance, though the use of lime juice to prevent scurvy in sailors dates back to at least 1795, the physician who accompanied Scott's voyage to the South Pole in 1910 believed scurvy was caused by bacteria, and inadequate nutritional measures were taken to prevent the disease among the explorers. Between 1925 and 1955, the known vitamins were all isolated and synthesized. Research continues today on the function of the various vitamins.

Raw Materials

Vitamins can be derived from plant or animal products, or produced synthetically in a laboratory. Vitamin A, for example, can be derived from fish liver oil, and vitamin C from citrus fruits or rose hips. Most commercial vitamins are made from synthetic vitamins, which are cheaper and easier to produce than natural derivatives. So vitamin A may be synthesized from acetone, and vitamin C from keto acid. There is no chemical difference between the purified vitamins derived from plant or animal sources and those produced synthetically. Different laboratories may use different techniques to produce synthetic vitamins, as many can be derived from various chemical reactions.

Vitamin tablets or capsules usually contain additives that aid in the manufacturing process or in how the vitamin pill is accepted by the body. Microcrystalline cellulose, lactose, calcium, or malto-dextrin are added to many vitamins as a filler, to give the vitamin the proper bulk. Magnesium stearate or stearic acid is usually added to vitamin tablets as a lubricant, and silicon dioxide as a flow agent. These additives help the vitamin powder run smoothly through the tablet-making or encapsulating machine. Modified cellulose gum or starch is often added to vitamins as a disintegration agent. That is, it helps the vitamin compound break up once it is ingested. Vitamin tablets are also usually coated, to give the tablets a particular color or flavor, or to determine how the tablet is absorbed (in the stomach versus in the intestine, slowly versus all at once, etc.). Many coatings are made from a cellulose base. An additional coating of carnauba wax is often put on as well, to give the tablet a polished appearance.

Herbs of various kinds may be added to vitamin compounds, as well as minerals such as calcium, iron, and zinc. Typically, specialized laboratories produce purified vitamins and minerals. A distributor buys these from the laboratories and sells them to manufacturers, who put them together in different compounds such as multivitamin tablets or B-complex capsules.

The Manufacturing
Process

Preliminary check

Preblending

Wet granulation

Weighing and mixing

Encapsulating machine

Polishing and inspection

Tableting

Coating

Packaging

Quality Control

Checks for quality are taken at many stages of vitamin manufacturing. All the ingredients of vitamin tablets or capsules are checked for identity and potency before they are used. Often this is tested both by the raw vitamin distributor and by the manufacturer. The mixed vitamin powder is checked before it is tableted or encapsulated, and the finished product is also thoroughly inspected. Federal regulations govern what substances can be used in vitamins and what claims manufacturers can make for their products. Vitamin ingredients must be proven safe before they can be made available to consumers.

The Future

Vitamin research is a volatile field, with new studies constantly suggesting new roles for vitamins in health and prevention of disease. Certain vitamins or vitamin-like substances go through fads of consumer popularity as some of this research surfaces. Nevertheless, the manufacturing process remains the same for new substances. The future of vitamins will likely change most conceptually, in how much we understand about how vitamins work.

Where to Learn More

Books

Bender, David A. Nutritional Biochemistry of the Vitamins. Cambridge University Press, 1992.

Hendler, Sheldon Saul. The Doctor's Vitamin and Mineral Encyclopedia. Simon and Schuster, 1991.

Lieberman, Shari and Nancy Bruning. The Real Vitamin & Mineral Book. Avery Publishing Group, 1990.

Angela Woodward



Also read article about Vitamin from Wikipedia

User Contributions:

1
Ken
Do processed vitamins lose any of the effacacy that is found in their raw state? For example, we know that veggies, when cooked, lose their enzyms.

We also know that many processing additives can be harmful. Basic question...do processed vits really do any good and are the additives harmful to the body.
2
Daniel
Are there alternatives to lactose? Some of the additives may not be suitable. Are there turn key processes for tablet or gel capsule production?

Comment about this article, ask questions, or add new information about this topic: