Aluminum



The metallic element aluminum is the third most plentiful element in the earth's crust, comprising 8% of the planet's soil and rocks (oxygen and silicon make up 47% and 28%, respectively). In nature, aluminum is found only in chemical compounds with other elements such as sulphur, silicon, and oxygen. Pure, metallic aluminum can be economically produced only from aluminum oxide ore.

Metallic aluminum has many properties that make it useful in a wide range of applications. It is lightweight, strong, nonmagnetic, and nontoxic. It conducts heat and electricity and reflects heat and light. It is strong but easily workable, and it retains its strength under extreme cold without becoming brittle. The surface of aluminum quickly oxidizes to form an invisible barrier to corrosion. Furthermore, aluminum can easily and economically be recycled into new products.

Background

Aluminum compounds have proven useful for thousands of years. Around 5000 B.C. , Persian potters made their strongest vessels from clay that contained aluminum oxide. Ancient Egyptians and Babylonians used aluminum compounds in fabric dyes, cosmetics, and medicines. However, it was not until the early nineteenth century that aluminum was identified as an element and isolated as a pure metal. The difficulty of extracting aluminum from its natural compounds kept the metal rare for many years; half a century after its discovery, it was still as rare and valuable as silver.

In 1886, two 22-year-old scientists independently developed a smelting process that made economical mass production of aluminum possible. Known as the Hall-Heroult process after its American and French inventors, the process is still the primary method of aluminum production today. The Bayer process for refining aluminum ore, developed in 1888 by an Austrian chemist, also contributed significantly to the economical mass production of aluminum.

In 1884, 125 lb (60 kg) of aluminum was produced in the United States, and it sold for about the same unit price as silver. In 1995, U.S. plants produced 7.8 billion lb (3.6 million metric tons) of aluminum, and the price of silver was seventy-five times as much as the price of aluminum.

Raw Materials

Aluminum compounds occur in all types of clay, but the ore that is most useful for producing pure aluminum is bauxite. Bauxite consists of 45-60% aluminum oxide, along with various impurities such as sand, iron, and other metals. Although some bauxite deposits are hard rock, most consist of relatively soft dirt that is easily dug from open-pit mines. Australia produces more than one-third of the world's supply of bauxite. It takes about 4 lb (2 kg) of bauxite to produce 1 lb (0.5 kg) of aluminum metal.

Caustic soda (sodium hydroxide) is used to dissolve the aluminum compounds found in the bauxite, separating them from the impurities. Depending on the composition of the bauxite ore, relatively small amounts of other chemicals may be used in the extraction

Aluminum is manufactured in two phases: the Bayer process of refining the bauxite ore to obtain aluminum oxide, and the Hall-Heroult process of smelting the aluminum oxide to release pure aluminum.
Aluminum is manufactured in two phases: the Bayer process of refining the bauxite ore to obtain aluminum oxide, and the Hall-Heroult process of smelting the aluminum oxide to release pure aluminum.
of aluminum. Starch, lime, and sodium sulphide are some examples.

Cryolite, a chemical compound composed of sodium, aluminum, and fluorine, is used as the electrolyte (current-conducting medium) in the smelting operation. Naturally occurring cryolite was once mined in Greenland, but the compound is now produced synthetically for use in the production of aluminum. Aluminum fluoride is added to lower the melting point of the electrolyte solution.

The other major ingredient used in the smelting operation is carbon. Carbon electrodes transmit the electric current through the electrolyte. During the smelting operation, some of the carbon is consumed as it combines with oxygen to form carbon dioxide. In fact, about half a pound (0.2 kg) of carbon is used for every pound (2.2 kg) of aluminum produced. Some of the carbon used in aluminum smelting is a byproduct of oil refining; additional carbon is obtained from coal.

Because aluminum smelting involves passing an electric current through a molten electrolyte, it requires large amounts of electrical energy. On average, production of 2 lb (1 kg) of aluminum requires 15 kilowatt-hours (kWh) of energy. The cost of electricity represents about one-third of the cost of smelting aluminum.

The Manufacturing
Process

Aluminum manufacture is accomplished in two phases: the Bayer process of refining the bauxite ore to obtain aluminum oxide, and the Hall-Heroult process of smelting the aluminum oxide to release pure aluminum.

The Bayer process

The Hall-Heroult process

Smelting of alumina into metallic aluminum takes place in a steel vat called a reduction pot. The bottom of the pot is lined with carbon, which acts as one electrode (conductor of electric current) of the system. The opposite electrodes consist of a set of carbon rods suspended above the pot; they are lowered into an electrolyte solution and held about 1.5 in (3.8 cm) above the surface of the molten aluminum that accumulates on the floor of the pot. Reduction pots are arranged in rows (potlines) consisting of 50-200 pots that are connected in series to form an electric circuit. Each potline can produce 66,000-110,000 tons (60,000-100,000 metric tons) of aluminum per year. A typical smelting plant consists of two or three potlines.

Byproducts/Waste

Alumina, the intermediate substance that is produced by the Bayer process and that constitutes the raw material for the Hall-Heroult process, is also a useful final product. It is a white, powdery substance with a consistency that ranges from that of talcum powder to that of granulated sugar. It can be used in a wide range of products such as laundry detergents, toothpaste, and fluorescent light bulbs. It is an important ingredient in ceramic materials; for example, it is used to make false teeth, spark plugs, and clear ceramic windshields for military airplanes. An effective polishing compound, it is used to finish computer hard drives, among other products. Its chemical properties make it effective in many other applications, including catalytic converters and explosives. It is even used in rocket fuel—400,000 lb (180,000 kg) is consumed in every space shuttle launch. Approximately 10% of the alumina produced each year is used for applications other than making aluminum.

The largest waste product generated in bauxite refining is the tailings (ore refuse) called "red mud." A refinery produces about the same amount of red mud as it does alumina (in terms of dry weight). It contains some useful substances, like iron, titanium, soda, and alumina, but no one has been able to develop an economical process for recovering them. Other than a small amount of red mud that is used commercially for coloring masonry, this is truly a waste product. Most refineries simply collect the red mud in an open pond that allows some of its moisture to evaporate; when the mud has dried to a solid enough consistency, which may take several years, it is covered with dirt or mixed with soil.

Several types of waste products are generated by decomposition of carbon electrodes during the smelting operation. Aluminum plants in the United States create significant amounts of greenhouse gases, generating about 5.5 million tons (5 million metric tons) of carbon dioxide and 3,300 tons (3,000 metric tons) of perfluorocarbons (compounds of carbon and fluorine) each year.

Approximately 120,000 tons (110,000 metric tons) of spent potlining (SPL) material is removed from aluminum reduction pots each year. Designated a hazardous material by the Environmental Protection Agency (EPA), SPL has posed a significant disposal problem for the industry. In 1996, the first in a planned series of recycling plants opened; these plants transform SPL into glass frit, an intermediate product from which glass and ceramics can be manufactured. Ultimately, the recycled SPL appears in such products as ceramic tile, glass fibers, and asphalt shingle granules.

The Future

Virtually all of the aluminum producers in the United States are members of the Voluntary Aluminum Industrial Partnership (VAIP), an organization that works closely with the EPA to find solutions to the pollution problems facing the industry. A major focus of research is the effort to develop an inert (chemically inactive) electrode material for aluminum reduction pots. A titanium-diboride-graphite compound shows significant promise. Among the benefits expected to come when this new technology is perfected are elimination of the greenhouse gas emissions and a 25% reduction in energy use during the smelting operation.

Where to Learn More

Books

Altenpohl, Dietrich. Aluminum Viewed from Within: An Introduction into the Metallurgy of Aluminum Fabrication (English translation). Dusseldorf: Aluminium-Verlag, 1982.

Russell, Allen S. "Aluminum." McGraw-Hill Encyclopedia of Science & Technology. New York: McGraw-Hill, 1997.

Periodicals

Thompson, James V. "Alumina: Simple Chemistry—Complex Plants." Engineering & Mining Journal (February 1, 1995): 42 ff.

Other

Alcoa Aluminum. http://www.alcoa.com/ (March 1999).

Reynolds Metals Company. http://www.reynoldswrap.com/gbu/bauxitealumina/ (April 1999).

Loretta Hall



User Contributions:

1
brogan
I think it should be more about the way it is separtated

Comment about this article, ask questions, or add new information about this topic: